
Bilkent University

Department of Computer Engineering

Senior Design Project

Group No: 2332

Project Name: Cyclops

Final Report
21902348, Kaan Kurçer, kaan.kurcer@ug.bilkent.edu.tr

21902903, Osman Serhat Yılmaz, serhat.yilmaz@ug.bilkent.edu.tr

21903213, Ali Doğaç Urkaya, dogac.urkaya@ug.bilkent.edu.tr

21902358, Özgür Abi, ozgur.abi@ug.bilkent.edu.tr

21902035, Jankat Berslan Dinçer, berslan.dincer@ug.bilkent.edu.tr

Supervisor: Shervin Rahimzadeh Arashloo

Course Instructors: Erhan Dolak, Tağmaç Topal

19.05.2023

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfilment of
the requirements of the Senior Design Project course CS492.



Table of Contents

1. Introduction 3
2. Requirements Details 3

Functional Requirements 3
Non Functional Requirements 4

i. Usability 4
ii. Performance 4
iii. Security 4
iv. Scalability 4
v. Reliability 4
vi. Maintainability 4

3. Final Architecture and Design Details 4
3.1. Overview 4
3.2. Human Counting System 5
3.3. Backend 5
3.4. Frontend 6

4. Development/Implementation Details 6
4.1. Frontend 6
4.1.1. Website for the Restaurant Owner and Staff 6
4.1.2. Website for Customers 8
4.2. Backend 9
4.2.1. Website for the Restaurant Owner and Staff 9
4.2.2. Website for Customers 9
4.3. Human Counting System 10

4.3.1. Human Detection Model 10
4.3.1.1. Image Labeling using CVAT 10
4.3.1.2. Training the model with Darknet 11

4.3.2 Detection with OpenCV 11
4.4. Face Recognition System 12
4.5. Database 13
4.5.1. Website for the Restaurant Owner and Staff 13
4.5.2. Website for the Customers 14

5. Test Cases and Results 14
6. Maintenance Plan and Details 31
7. Other Project Elements 32

7.1. Consideration of Various Factors in Engineering Design 32
7.2. Ethics and Professional Responsibilities 32
7.3. Teamwork Details 32

7.3.1 Contributing and functioning effectively on the team 32
7.3.2 Helping creating a collaborative and inclusive environment 33
7.3.3 Taking lead role and sharing leadership on the team 33
7.3.4. Meeting objectives 33



7.4. New Knowledge Acquired and Applied 33
8. Conclusion and Future Work 34

1. Introduction

Restaurants are visited by hundreds of customers every day. Different types of customers
have different spending habits, visiting times, and preferences. The traffic of the restaurant
also varies greatly for different hours of the day. Although restaurant owners already record
the inside of their restaurants for security reasons, they are unable to collect and utilize the
data produced by their customers. The information gained from monitoring the customers’
count and preferences could be used to enhance both the user experience of the visitors
and the profits of the restaurant owners. Cyclops aims to analyze the security feed of the
restaurant to collect this information and provide it to the restaurant owner along with tips on
how to improve their restaurant using said information.

Our system aims to keep track of customers in the restaurant while also providing detailed
reports and statistics about customers. Therefore, the purpose of the system is to accurately
track the number of customers while analyzing them at the same time.

The application will be able to track customer info of the restaurant and give precise and
detailed information to restaurant owners. Also, since our system is meant to be used by
restaurant owners or managers and not by engineers, UI will be easy to manage and
navigate. Another aim of this application is to safely keep the customer data and protect their
privacy.

While there already exists some apps that provide information about restaurant availability,
these applications only provide limited availability data and not actual numbers, our
application will be much more precise. For the restaurants, the app will provide them with
useful insights on their customers.For this application computer vision, developed with
python, will be utilized with cameras and it will be the base of our customer tracking and
analysis systems. Our application will also be able to work even with crowded restaurants.

2. Requirements Details

Functional Requirements
● The user can sign up with their accounts.
● The user can choose between the customer and manager version of

the site
● The program can generate a fullness amount of the restaurant
● The program can generate customer information



● The program can recognize individual customers
● The program can store information about tables in the restaurant
● Users can view information about various restaurants.
● Managers can view previous orders of customers
● Users can view graphs about restaurant availability by hour

Non Functional Requirements

i. Usability
● System should be easily understandable by the restaurant staff
● For the customers it should be easy to view restaurant info

ii. Performance
● System should be able to keep track of customers pretty quickly
● Stored information should be accessible without much lag

iii. Security
● Data about customers should not be easily accessible
● Each restaurants info should only be accessible by that restaurant

iv. Scalability
● The app should work with decent size restaurants
● Program should also be able to work with large number of customer

info
v. Reliability

● The program should track customers with few or no errors
vi. Maintainability

● Program and its components should be easy to keep track of and
modify

3. Final Architecture and Design Details
3.1. Overview

The architecture of Cyclops is split into three main modules: human counting
system, the frontend that users interact with, and the backend which ties the
other two together. The human counting system and the backend
communicate via the database(the human counting system updates the data
there) whereas the backend and frontend communicate via HTTP requests.
We’ve followed an MVC(Model-View-Controller) approach throughout the
application.



3.2. Human Counting System
The human counting system is responsible for keeping track of the amount of
people that are in the restaurant, as well as doing face recognition when they
enter the restaurant. It uses a human detection model which is trained
specifically for each restaurant(as the camera angles and image quality differ
from restaurant to restaurant). The data that this system generates is written
into the database, where it can be read by the backend.

3.3. Backend
The backend of the application is where the data related to the app is kept
and manipulated. The backend is responsible for reading the data written by
the human counting system and sending the relevant data to the frontend so
that it can be displayed. Relevant information about the restaurants and users
as well as customers are modeled as classes within the backend. These data
are written into the database and modified as needed.



3.4. Frontend
The frontend of the application is where the user interacts with the app.
Depending on which pages the user is displaying at that moment, necessary
data is queried to the backend. The data is then displayed on the frontend for
the user to see.

4. Development/Implementation Details
This part will be explained in 4 subsections, these subsections are frontend of the web
project, backend of the web project, the human counting system and the face recognition
system.

4.1. Frontend
The frontend part of our project is divided into 2 parts for different users. The
first one is for the restaurant owners and the staff to use, this project’s data
contains sensitive information therefore it can only be seen by the restaurant
owner. The other part of the frontend is created for customers to see the
number of people in any restaurant, this web project has data from many
restaurants and displays them.

4.1.1. Website for the Restaurant Owner and Staff

Home Page: A simple page that allows managers to choose which restaurant
they will manage

Login/Register: Page for logging in and registering. Without a login users can
not access the website for the managers. Customer website does not require
users to login/register.

Customers Page:In the customer page, managers can see each customers
present in the restaurant. Customers name and surname are available. All the
customers that are present at the restaurant at that time are listed.



Restaurant Page: In this page customer count and live graph of the customer
count is displayed. This tracks the precise number of customers.



Orders Page: This page display orders given by the customers. Customer
name, order and table id will be displayed along with the order.

4.1.2. Website for Customers



4.2. Backend
The backend part of our project is divided into 2 parts similar to the frontend
part. They will be explained in their respective subsections. Both parts are
implemented using Java Spring, and have entities, repositories, services and
controllers used for data manipulation.

4.2.1. Website for the Restaurant Owner and Staff
The application has entity classes for modeling all the data mentioned
in the database part. It has the following controllers for managing
communication between React and database:

● CustomerController: Has 2 endpoints for managing customer
entities.

1. getById: Returns a customer entity which has the
specified id.

2. all: Returns all customers in the database.
● LoginController: Has 3 endpoints for managing

authentication.
1. getEmail: Returns current users registration email.

Returns “notAuthenticated” if user is not logged in.
2. register: Registers a user with the specified information

(email, username, password).
3. perform_login: Not part of the LoginController but part

of Spring Security, authenticates user with credentials
specified at the login form.

● OccupiedDataController: Has 3 endpoints for managing table
occupation data.

1. gettoday: Returns all table occupation data in the
current day.

2. gettodaycount: Get today’s customer count.
3. create: Creates an occupation data with specified table

id and customer count.
● OrderController: Has 2 endpoints for managing food order

data.
1. getById: Returns a food order entity which has the

specified id.
2. all: Returns all orders.

4.2.2. Website for Customers
The application has entity classes for modeling all the data mentioned
in the database part. It has the following controllers for managing
communication between React and database:

● ResInfoController: Has 2 endpoints for managing restaurant
information.



1. /{id}: Returns a restaurant information data which has
the specified restaurant id.

2. all: Returns all restaurant information data.
● LoginController: Has 3 endpoints for managing

authentication.
1. getEmail: Returns current users registration email.

Returns “notAuthenticated” if user is not logged in.
2. register: Registers a user with the specified information

(email, username, password).
3. perform_login: Not part of the LoginController but part

of Spring Security, authenticates user with credentials
specified at the login form.

4.3. Human Counting System
One of the main functionalities of our project is to count the number of people
that are in the restaurant at that moment and send this data to the backend
for the web project to display it. In this part, the generation process of the
human detection model and how these data are sent to the backend will be
explained.

4.3.1. Human Detection Model
The model that detects humans in a restaurant is custom

trained for every restaurant because it increases the accuracy of the
model. In this process, the sample frames taken from the restaurant
footage are labeled using the image labeling tool CVAT (Computer
Vision Annotation Tool)

4.3.1.1. Image Labeling using CVAT
CVAT, which stands for Computer Vision Annotation

Tool, is a platform that facilitates the annotation and labeling of
images for various computer vision tasks. It provides a
user-friendly interface and a range of annotation tools, making
it suitable for both experts and non-experts in computer vision.

To use CVAT, the first step is to upload the images that
require labeling. These images were obtained by dividing the
restaurant footage and taking a sample every 20 frames. Once
these images are uploaded, the annotators can access them
through the CVAT interface. CVAT offers various annotation
tools, such as bounding boxes, polygons, and key points,
which can be used to label objects of interest in the images.
The annotators can draw bounding boxes around the objects,
assign labels to them, and fine-tune the annotations as
needed. We used the tracker annotator to label the human
heads in the example footage.



Once the images are labeled using CVAT, the next step
is to generate YOLO (You Only Look Once) data from these
labeled images. YOLO is a popular object detection algorithm
that requires specific data formats for training. CVAT offers an
export functionality that allows users to export the annotations
in YOLO-compatible formats, such as YOLOv3 which is the
one that we used. By exporting the annotations in these
formats, the labeled images are used as training data for
training YOLO models.

4.3.1.2. Training the model with Darknet

After YOLOv3 formatted data is obtained, to train an
object detection model we used the Darknet framework. It
begins by cloning the Darknet repository from GitHub and
making necessary configurations in the Makefile to enable
GPU and OpenCV support. Pre-trained weights for the Darknet
model 53 is used. The training process is initiated using the
modified configuration file and pre-trained weights. The
Darknet framework sets up and trains a YOLOv3 model,
making it suitable for object detection tasks.

4.3.2 Detection with OpenCV

After pre-trained YOLOv3 weights are obtained, we use
OpenCV and Python for real-time object detection on a video using
the YOLOv3 algorithm and save the average hourly count of a specific
object in a database. The code uses the OpenCV library to load the
pre-trained YOLOv3 weights and configuration files. It captures frames
from the specified video file and resizes them for processing. The
YOLOv3 model is then used to detect objects within each frame, and
the detected objects are annotated with bounding boxes. The code



calculates the number of detected objects and tracks the hourly count
by incrementing a frame counter. After every hour (3600 frames), the
average hourly count is calculated and saved to a MySQL database
which is connected to the backend of both web projects. The code
continues this process until the end of the video. Overall, this code
provides a practical solution for real-time object detection and
automated counting of objects in videos.

4.4. Face Recognition System
Introducing our cutting-edge face recognition system, designed to

revolutionize the way we cater to our valued customers at our restaurant. This
system has been specifically developed to predict and identify our customers,
enabling us to provide a personalized experience. With the ability to
recognize and remember individual faces, our face recognition system
ensures that each customer receives tailored service, allowing us to
anticipate their preferences and deliver a level of satisfaction. We used
OpenCV and Python to implement this functionality. Restaurants should place
a camera near face height to the entrances for this process to work because
face recognition requires high-quality images to distinguish the people
properly and not mix in predictions.

Our code implements a face recognition system that can detect and
recognize faces in a video. It applies face detection on each frame using a
Haar Cascade classifier. If a frame containing a detected face is found, it is
returned. This way, we can get the customer's face when he/she enters the
restaurant and use our model to predict it.

A model is created to predict the customer names using the previous
entrances of the customer. When a customer enters to the restaurant for the
first time, our code cannot label it since her/his face is not saved previously.
So the code creates a new folder and gives it an id, saves the new customer
to the backend, and puts the images of the customer into a folder to use it in
the future predictions of that customer.

The creation of the model includes creating and training a face
recognizer. In this case, it uses the LBPH (Local Binary Patterns Histograms)
face recognizer from OpenCV. The training data, consisting of faces and
labels, is passed to the face recognizer for training.

Below is the frame that the program passes to the model to predict, this frame
is the first moment that our code sees a face in the video:



After this frame is passed to the model for prediction, it gives the below
output:

As it can be seen, our program captures the moment a customer enters the
restaurant and successfully predicts if that customer entered that restaurant
before. After the prediction, the system saves this customer to the database
with its entrance time and id, later the web project uses this information.

4.5. Database

4.5.1. Website for the Restaurant Owner and Staff
The database for restaurants is hosted on the restaurant's own
hardware and the data is not shared with other restaurants. It holds
restaurant specific information and information about customers who
have visited the restaurant. It has the following tables:

● Customer: Stores customer name, surname, age and sex.



● Customer_count: Stores customer count at a specific time.
● Food_order: Stores customer order, customer id and table id.

The staff enters the information using ur system when a food is
ordered.

● Occupied_data: Similar to customer count, but stores customer
count at a specific time and table.

● Session: Represents the session of a customer or multiple
customers in the restaurant. Stores customer count, customer
enter and exit time, table id and money spent by customer.

● Session_customer_list: Binds sessions with customer ids.
Stores session id and customer id list.

● User: Holds login credentials for restaurant owner and staff.
Stores user id, email, password, username and role.

4.5.2. Website for the Customers
The database for restaurants is hosted on our own servers. It holds
user authentication information and various information for all
restaurants using our application, and has the following tables:

● Res_info: Holds restaurant information. Stores restaurant id,
restaurant name, current customer count, address, telephone
number and whether the restaurant is open or not.

● User: Holds login credentials for our users. Stores user id,
email, password, username and role.

5. Test Cases and Results
Test ID 1

Test Type/Category Functional, component, usability.

Summary/Title/Objective Check if the login and register buttons correctly
redirect the user to their respective pages.

Procedure of testing steps Try the buttons on multiple platforms and verify that
they successfully redirect users to the correct pages.

Expected results/Outcome The login and register buttons correctly redirect the
user to their respective pages.

Priority/Severity Critical

Date Tested - Test Result 19.05.2023 - Pass



Test ID 2

Test Type/Category Security, component.

Summary/Title/Objective Check if the password is hidden while entering.

Procedure of testing steps Try entering the password in the login screen.

Expected results/Outcome The password is hidden while entering, and the
letters are replaced by stars (*).

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 3

Test Type/Category Security, installation, compatibility.

Summary/Title/Objective Make sure the username does not contain invalid
characters.

Procedure of testing steps Try entering invalid characters into the username box
while creating an account.

Expected results/Outcome The user is blocked from choosing a username that
contains invalid characters.

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 4

Test Type/Category Security, installation.

Summary/Title/Objective Make sure the user cannot have a password that
does not fit predefined criteria.

Procedure of testing steps Try entering a password that does not fit predefined
criteria into the password box while creating an
account.

Expected results/Outcome The user is blocked from choosing a password that
does not fit predefined criteria.

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 5

Test Type/Category Usability, component.

Summary/Title/Objective Check if closed restaurants are listed after open
restaurants in the drop down list.

Procedure of testing steps Check if the restaurants are listed correctly.

Expected results/Outcome The restaurants that are currently closed show up
after the restaurants that are currently open in the
drop down list.

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 6

Test Type/Category Usability, non-functional, component.

Summary/Title/Objective Check if restaurants are displayed with the correct
images.

Procedure of testing steps Check different restaurants from the drop down list
and see if their images are correct.

Expected results/Outcome Each restaurant displays its logo or image next to its
name in the drop down list.

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 7

Test Type/Category Usability, functional, component.

Summary/Title/Objective Check if the drop down list disappears and the user is
correctly redirected to the chosen restaurant when a
restaurant is selected from the list.

Procedure of testing steps Check if the user is correctly redirected to the chosen
restaurant.

Expected results/Outcome The user is taken to the page of the restaurant of
their choice.

Priority/Severity Critical

Date Tested - Test Result 19.05.2023 - Pass



Test ID 8

Test Type/Category Component, functional, usability, compatibility.

Summary/Title/Objective Check if the restaurant list functions correctly at
different window sizes.

Procedure of testing steps Resize the window and check if the restaurant list
works.

Expected results/Outcome The restaurant list works at different window shapes
and sizes.

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Pass

Test ID 9

Test Type/Category Component, functional, usability..

Summary/Title/Objective Check if the forgot password text is clickable.

Procedure of testing steps Try clicking the forgot password text.

Expected results/Outcome The forgot password text is clickable and redirects
users to the password reset page.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 10

Test Type/Category Component, non-functional, security.

Summary/Title/Objective Make sure an account cannot be created without
having pressed the “I agree to the Terms of Use and
Privacy Policy” button.

Procedure of testing steps Try and create an account without pressing the
button.

Expected results/Outcome Users that try to create accounts without pressing the
aforementioned button are denied.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 11

Test Type/Category Component, functional

Summary/Title/Objective Check if the correct restaurant is displayed when the
customer selects a restaurant.

Procedure of testing steps Try to choose a restaurant from the restaurant list.

Expected results/Outcome The correct restaurant is displayed when the
customer selects a restaurant.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 12

Test Type/Category Component, functional

Summary/Title/Objective Check if the restaurant list is correctly displayed to
the customer.

Procedure of testing steps Navigate to the restaurant list screen to see the
restaurant list.

Expected results/Outcome The restaurant list is correctly displayed to the
customer.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 13

Test Type/Category Component, Functional

Summary/Title/Objective Check if the current customer count is correctly
displayed in the info page after choosing a restaurant.

Procedure of testing steps Choose a restaurant and check if the current
customer count matches with the data given to the
backend via the monitoring system.

Expected results/Outcome The current customer count is correctly displayed in
the restaurant info page after choosing a restaurant.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass



Test ID 14

Test Type/Category Component, Functional

Summary/Title/Objective Check if the maximum capacity of a restaurant is
correctly displayed in the restaurant info page after
choosing a restaurant.

Procedure of testing steps Choose a restaurant and check if the maximum
capacity is displayed correctly in reference to the data
in the database.

Expected results/Outcome The maximum capacity of a restaurant is correctly
displayed in the restaurant info page after choosing a
restaurant.

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Pass

Test ID 15

Test Type/Category Component, Functional

Summary/Title/Objective Check if the date selection menu under the
Restaurant Density tab is displaying the dates
correctly.

Procedure of testing steps Click on the date selection menu and check if the
dates are correctly ordered and displayed.

Expected results/Outcome The date selection menu under the Restaurant
Density tab is displaying the dates correctly.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 16

Test Type/Category Component, Functional

Summary/Title/Objective Check if the correct hour intervals are displayed
under the Restaurant Density tab.

Procedure of testing steps Select a day from the date selection menu and check
if the bar chart displays the hour intervals correctly.

Expected results/Outcome The correct hour intervals are displayed under the
Restaurant Density tab.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 17

Test Type/Category Component, Functional

Summary/Title/Objective Check if the date selection menu under the restaurant
density tab allows the user to change the year, month
and day.

Procedure of testing steps Try to change the year, month and day in the date
selector.

Expected results/Outcome The date selection menu under the restaurant density
tab allows the user to change the year, month and
day.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 18

Test Type/Category Component, Non-functional

Summary/Title/Objective Check if the bar charts are distinct enough from each
other for different densities.

Procedure of testing steps In the restaurant density tab check if the size of the
chart is big enough to distinguish the bars from each
other.

Expected results/Outcome The bar charts are distinct enough from each other
for different densities.

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Pass

Test ID 19

Test Type/Category Component, Integration, Functional

Summary/Title/Objective Check if changing the date changes the bar chart
density representation.

Procedure of testing steps Change the date from the date selection tab and
check if the bar chart changes accordingly.

Expected results/Outcome Changing the date changes the bar chart density
representation.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 20

Test Type/Category Component, functional

Summary/Title/Objective Make sure the user can only enter a date (in the form
of DD/MM/YYYY) in the date selection tab.

Procedure of testing steps Try to enter text into the date selection tab to check if
it allows text into the input field.

Expected results/Outcome The user can only enter a date (in the form of
DD/MM/YYYY) in the date selection tab.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 21

Test Type/Category Functional, Integration

Summary/Title/Objective Check if the prediction of human count in restaurant
is correct

Procedure of testing steps Compare the predicted customers by human counting
system and compare it with the real results.

Expected results/Outcome Error rate is expected to be below %10

Priority/Severity Critical

Date Tested - Test Result 19.05.2023 - Pass

Test ID 22

Test Type/Category Integration, Usability

Summary/Title/Objective Check if the prediction of the human counting system
is displayed correctly on the UI.

Procedure of testing steps Compare the value in the database with the value in
the UI.

Expected results/Outcome Both values should be the same.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass



Test ID 23

Test Type/Category Integration

Summary/Title/Objective Check if the past human counts is saved

Procedure of testing steps Compare the prediction of human counting system for
a past time footage with the value saved to the
database for that time.

Expected results/Outcome Both values should be the same.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 24

Test Type/Category Integration, Compatibility

Summary/Title/Objective Check if the graph of density of restaurant is correct

Procedure of testing steps Compare the values displayed in the graph with the
real values saved in database.

Expected results/Outcome Values should be the same.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 25

Test Type/Category Integration, Compatibility

Summary/Title/Objective Check if the favorite meal information of customer is
correct

Procedure of testing steps Compare the most ordered food by customer and
favorite meal of customer in the database.

Expected results/Outcome Both values should be the same

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass



Test ID 26

Test Type/Category Security

Summary/Title/Objective Check if logout is made successfully

Procedure of testing steps Login to see if session started and then logout and
check the session information to see whether it is
finished or not.

Expected results/Outcome Session should be finished after logout is made.

Priority/Severity Critical

Date Tested - Test Result 19.05.2023 - Pass

Test ID 27

Test Type/Category Integration, Functional

Summary/Title/Objective Check if the table numbers are unique for every table

Procedure of testing steps Check the database to see if there are 2 tables that
have the same id.

Expected results/Outcome Every table should have different table number.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 28

Test Type/Category Integration, Functional

Summary/Title/Objective Check if the same table is not shown occupied at the
same time by different customers.

Procedure of testing steps Check the session time for tables and see if 2
different sessions intersect.

Expected results/Outcome Sessions should not intersect for the same table.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass



Test ID 29

Test Type/Category Usability, Functional

Summary/Title/Objective Check if users can see empty tables at that moment
correctly.

Procedure of testing steps Compare the state of tables at the UI with the real
state of tables.

Expected results/Outcome Both values of empty tables should be the same.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 30

Test Type/Category Functional

Summary/Title/Objective Check if the session duration of the customer is
predicted correctly.

Procedure of testing steps Compare the value recorded by human counting
system with the real duration of session of customer.

Expected results/Outcome Values should not have more difference than 5
minutes.

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 31

Test Type/Category Functional

Summary/Title/Objective Check if the transition between restaurant information
and customer information works correctly

Procedure of testing steps Click the buttons to check if transition happens

Expected results/Outcome The app should be able to switch from one tab to the
other

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass



Test ID 32

Test Type/Category Functional

Summary/Title/Objective Check if today's customers menu displays all the
customers

Procedure of testing steps Check the todays customers menu and compare it to
actual customers in a location

Expected results/Outcome Menu lists all the customers

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 33

Test Type/Category Functional

Summary/Title/Objective Check if the pictures of today's customers are listed
correctly

Procedure of testing steps Look at the displayed pictures and compare them to
real pictures

Expected results/Outcome Pictures are displayed correctly

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 34

Test Type/Category Functional

Summary/Title/Objective Check if registered customers are recognized
properly

Procedure of testing steps See if the system can recognize a registered
customer

Expected results/Outcome System properly recognizes registered customers

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass



Test ID 35

Test Type/Category Functional

Summary/Title/Objective Check if entry time of customers are tracked correctly

Procedure of testing steps Check in real life if the customers that enter are
tracked properly

Expected results/Outcome Customer entry times are correct

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 36

Test Type/Category Functional

Summary/Title/Objective Check if departure time of customers are tracked
correctly

Procedure of testing steps Check in real life if the customers that leave are
tracked properly

Expected results/Outcome Customer departure times are correct

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Pass

Test ID 37

Test Type/Category Functional

Summary/Title/Objective Check if the table no is properly listed

Procedure of testing steps Check if the listed table no and real table no are
matching

Expected results/Outcome Table no is tracked correctly

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 38

Test Type/Category Functional

Summary/Title/Objective Check if the customer no is correct

Procedure of testing steps Check to see if when a customer enters their no is
properly assigned

Expected results/Outcome Customer no is correctly tracked

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Pass

Test ID 39

Test Type/Category Functional

Summary/Title/Objective Check if customer visits are correct

Procedure of testing steps Check if a customer is recorded when they visit

Expected results/Outcome Customer visits are listed correctly

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Pass

Test ID 40

Test Type/Category Functional

Summary/Title/Objective Check if customer purchases are correct

Procedure of testing steps Check if purchases can be entered and stored
correctly

Expected results/Outcome Purchases are valid

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 41

Test Type/Category Functional

Summary/Title/Objective Check if favorite meals are correct

Procedure of testing steps Check the prior purchases and compare them to the
favorite meal

Expected results/Outcome Favorite meal is listed correctly

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 42

Test Type/Category Functional

Summary/Title/Objective Check if current customer count of the table is
displayed correctly

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome Current customer count of the table is displayed
correctly

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 43

Test Type/Category Functional

Summary/Title/Objective Check if customer count of the table at the selected
time interval is displayed correctly

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome Customer count of the table at the selected time
interval is displayed correctly

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 44

Test Type/Category Functional

Summary/Title/Objective Check if all tables are listed on the restaurant density
page

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome All tables are listed on the restaurant density page

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 45

Test Type/Category Functional

Summary/Title/Objective Check if customers at the table are identified correctly

Procedure of testing steps Check the records in the database and compare it
with the UI

Expected results/Outcome Customers at the table are identified correctly

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 46

Test Type/Category Functional

Summary/Title/Objective Check if the most preferred time interval for the table
is displayed correctly

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome The most preferred time interval for the table is
displayed correctly

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 47

Test Type/Category Functional

Summary/Title/Objective Check if there are no duplicate records in the
customer count of tables database

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome There are no duplicate records in the customer count
of tables database

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 48

Test Type/Category Functional

Summary/Title/Objective Check if the most preferred tables of the restaurant
are displayed in correct order

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome The most preferred tables of the restaurant are
displayed in correct order

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 49

Test Type/Category Functional

Summary/Title/Objective Check if average customer count of the table is
displayed correctly

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome Average customer count of the table is displayed
correctly

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented



Test ID 50

Test Type/Category Functional

Summary/Title/Objective Check if average customer count of the restaurant is
displayed correctly

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome Average customer count of the restaurant is
displayed correctly

Priority/Severity Minor

Date Tested - Test Result 19.05.2023 - Unimplemented

Test ID 51

Test Type/Category Functional

Summary/Title/Objective Check if there are no unnecessary records in the
customer count of tables database

Procedure of testing steps Check the record in the database and compare it with
the UI

Expected results/Outcome There are no unnecessary records in the customer
count of tables database

Priority/Severity Major

Date Tested - Test Result 19.05.2023 - Unimplemented

6. Maintenance Plan and Details
Our application for restaurant owner and staff, and its database are hosted on the
restaurant's own hardware, so it doesn’t require any maintenance on our part.

Our application for customers and its database is hosted on DigitalOcean. It uses
Ubuntu 22.10 as OS and has the following hardware properties:

● 2 vCPUs
● 4GB RAM
● 25 GB Disk

Both our frontend and backend applications use the same server, and the application
can be accessed from 104.248.26.143:3000.
The database uses MySQL 8 and has the following properties:

● 1 GB RAM
● 10 GB Disk



Any updates on the customer application should be done at hours where most
restaurants are not active (preferably at night) to ensure that the users are able to
access our application without interruptions.

7. Other Project Elements

7.1. Consideration of Various Factors in Engineering Design
We took a comprehensive approach to engineering design in our software
project, taking into consideration various factors that were crucial to its
success. Firstly, we prioritized the user experience and ensured that our
software was user-friendly, intuitive, and accessible to both restaurant owners
and customers. Additionally, we placed a strong emphasis on the software's
reliability and scalability, ensuring that it could handle large amounts of data
and traffic and work with different sizes of restaurants. Security was also a
major concern, and we implemented robust security measures to protect
sensitive user data and prevent unauthorized access. Finally, we ensured that
our software was compatible with a wide range of devices and operating
systems, allowing for maximum flexibility and accessibility for our users.

7.2. Ethics and Professional Responsibilities
During the implementation of Cyclops, ethical and professional
responsibilities were observed. Our application makes use of customer data
such as facial recognition data, user login credentials (email, password etc.)
and personal information (name, age etc.). Customer facial recognition data is
obtained through security cameras of the restaurant and does not pose an
ethical issue, while personal information is obtained by restaurant staff with
customer consent. Customer data obtained in a restaurant is not shared with
other restaurants, which reduces the security risks and ensures that
restaurants are not able to exploit customer data.

7.3. Teamwork Details

7.3.1 Contributing and functioning effectively on the team
We were able to satisfy the requirements for contributing and functioning
effectively on the team by prioritizing communication and teamwork. We
made sure to communicate effectively with each other, actively listening to
each other's ideas and feedback. We also worked together closely to achieve
our common goals, and we were always accountable and responsible for our
own tasks and deadlines. In addition, we were always willing to step up and
help out when a team member needed assistance.



7.3.2 Helping creating a collaborative and inclusive
environment
To help create a collaborative and inclusive environment, we actively sought
out diverse perspectives and ideas, and encouraged each other to share our
thoughts and experiences. We fostered open communication and feedback,
creating a space where everyone felt valued and supported. We were always
respectful and considerate of each other's unique backgrounds, experiences,
and perspectives.

7.3.3 Taking lead role and sharing leadership on the team
In taking a lead role and sharing leadership on the team, we set clear goals
and expectations for the team and communicated them effectively. We led by
example, being accountable and responsible for our own tasks,
demonstrating a strong work ethic and commitment to the project.
Additionally, we shared leadership on the team, empowering and encouraging
each other to take on leadership roles as well, and actively seeking out each
other's input and feedback. By doing so, we were able to create a more
collaborative and inclusive environment and ensure that everyone felt valued
and supported.

7.3.4. Meeting objectives
As a collaborative team, we achieved most of our project objectives
successfully. By using our diverse skill sets and expertise, we planned and
executed our tasks to ensure data obtained from cameras for people counting
is sent to our backend and shown to users on our frontend systems . Our
team's technical prowess was utilized through the development and
integration of Java Spring and Node.js, which enabled us to build a
successful application. We made use of open communication channels,
conducted regular meetings and shared progress updates, which resulted in
effective coordination. Each team member played a vital role in this
accomplishment, brought innovative ideas and provided constructive
feedback. We embraced a flexible approach, accommodating adjustments as
we updated project requirements throughout the project. Through our strong
teamwork, we delivered a successful restaurant management system that
met our project objectives.

7.4. New Knowledge Acquired and Applied
Although we had all worked on numerous projects in the last years, none of them

required us to apply concepts and technologies from such different fields into a single project
as this one. We were required to build 2 web applications, setup a server to host the project,
train multiple image recognition systems, setup and manage a database, and to integrate all



these parts into a single project seamlessly. We had taken classes that helped us with each
aspect of the project, but we had to do our own research to figure out how exactly these
systems could be integrated into one. We also had to do our own research on how to set up
a server for the customer web application. We applied what we had learned from our
Machine Learning class into training the image recognition software using the YOLOv3
algorithm and the Darknet framework. Although we were acquainted with the concepts, we
had to learn more on our own to be proficient with image recognition.

8. Conclusion and Future Work
In conclusion, our project addresses the challenge of counting the number of people

in a restaurant and displaying it to users for assessing the density. We have developed an
efficient solution using the YOLOv3 algorithm and the Darknet framework for real-time object
detection in video footage. By leveraging computer vision techniques, our system accurately
detects and tracks individuals within the restaurant environment. The average hourly count
of people is calculated and stored in a database, allowing users to monitor the crowd density
over time. This information can help restaurant owners and managers make informed
decisions regarding capacity management, customer service, and overall safety measures.
Our solution offers a practical and automated approach to crowd monitoring, eliminating the
need for manual counting and providing real-time insights. Moving forward, further
improvements and optimizations can be made to enhance the accuracy and performance of
the system. Also, we aim to present this project to investors and possibly get an investment
for our idea. Overall, our project showcases the potential of computer vision technology in
facilitating crowd management.


